
THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 108

1): For this purpose, an additional variant of the p-operator is provided (p_imm = p immediate; see also
table 7.1).

8. Machine Codes

Machine codes can be byte codes (variable length) or fixed-format instruction codes. The principal
layout of these machine instruction formats is well known in computer architecture. Therefore, it is
sufficient to briefly explain a few examples. The following examples illustrate:

• Instructions of different length (16, 32, 64 bits as well as byte codes with variable length).
• Instruction formats with an addressing capability as large as possible (in other words, with long

address fields).
• Instruction formats that can initiate simultaneously as many as possible functions.
• Formats with short and long instructions.
• Instruction formats with flat and split resource address space.
• Utilization of buffer registers for transfer of data that does not fit the respective instruction format.

Some important considerations of the instruction format design:

1. Address fields should be as long as possible.
2. Resource type fields (in the s-operator) should be sufficiently long (8 bits are typically the lowest

limit).
3. Instruction decoding should be done with comparatively simple means.
4. The bits of the instruction format should be used efficiently.
5. It should be straightforward, to deliver elementary immediate values as parameters1).
6. In order to be able to encode further instructions, sufficient reserves should be provided.

When the instruction set is preferably provided for software-based emulation, long address fields are
important while the simultaneous initiation of several functions (parallel operation) is practically
meaningless (it cannot be supported by the emulator anyway). In contrast to this, in the instruction sets
for special hardware (special processors, processing circuitry in FPGAs) parallel processing is the
primary concern. The resource address information must be only of such a length that the actually
present hardware can be supported. For general-purpose hardware (microcontrollers, high-performance
processors) typically a compromise between address length and the support of parallel operation
functions can be found.

All examples contain unused bit positions or special reserved formats that can be used for extension of
the respective instruction set (for example, for m-operators, h-operators, u-operators; for s-operators
for requesting resources via the Internet; for instructions controlling the platform etc.). Additional
instructions can also occupy more than one instruction word.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 109

1): This is in contrast to the byte codes discussed in chapter 7.

8.1 Example 1: Byte Codes

The instructions are comprised of sequential bytes (byte code). Instruction formats with variable length
can be found in many computer architectures. Such an instruction begins with an operation code byte
that determines the instruction function as well as the number and meaning of subsequent bytes. Those
bytes constitute information fields containing ordinal numbers, addresses or immediate values. In the
example (table 8.1 and fig. 8.1), each instruction has only a single function1) (for example, five s-
operators must be provided in order to select five identical resources).

operator 1st field 2nd field 3rd field 4th field

s resource type – – –

s_a resource type resource address – –

p variable address1) resource address parameter address –

p_imm immediate value resource address parameter address –

y resource address – – –

a resource address variable address1) – –

l resource address parameter address resource address parameter address

c resource address parameter address resource address parameter address

d resource address parameter address resource address parameter address

r resource address – – –
1): Displacement to address variables in memory.

Table 8.1 An overview over the instruction formats of the example byte code. Each of the fields
consists of one or more bytes (refer to fig. 8.1).

Table 8.1 provides an overview of the instruction formats for a split resource address space. In the
instructions for a flat resource address space the parameter address fields are not needed. The functions
of the instructions have been explained in table 7.1.

The fields according to table 8.1 and fig. 105 can be used as some kind of modular system from which
the instruction formats for a certain machine can be combined in a building block fashion. Table 8.2
contains the length of the individual fields (in bytes) for several typical areas of applications. Those
instruction formats have enough reserves. The addressing capability of the individual fields is
practically never completely utilized.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 110

example resource
type

resource
address

immediate
value1)

 variable
address

parameter
address

hardware for
embedded systems

1 1 or 2 1, 2 2 1

high-performance hardware 1 or 2 1 or 2 1, 2, 3, 4 4 1

software (emulation) for
embedded systems

2 2 or 3 1, 2, 3, 4 2 or 3 -

software (emulation) for
high-performance systems

3 or 4 4 2, 4 3 or 4 -

1:) In order to reduce code size, it is advantageous to provide several p_imm operators having immediate values
of differently length.

Table 8.2 Typical sizes of the particular fields (in bytes) for different areas of application.

Fig. 8.1 Different formats of byte code instruction fields.

Fig. 8.1 shows the formats of the fields of which the instructions are comprised:

a) 1 byte. For operation codes, resource types, resource addresses, parameter addresses, and immediate
values.

b) 2 bytes. For operation codes, resource types, resource addresses, parameter addresses, and
immediate values.

c) Variable address (in memory), 2 bytes. W = access width, B = base address register (refer to table
8.4); 4 different access widths, 4 base address registers, 12 bits displacement.

d) 3 bytes. For operation codes, resource types, resource addresses, parameter addresses, and
immediate values.

e) Variable address (in memory), 3 bytes. W = access width, B = base address register (refer to table
8.4); 8 different access widths, 4 base address registers, 19 bits displacement.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 111

f) 4 bytes. For operation codes, resource types, resource addresses, parameter addresses, and
immediate values.

g) Variable address (in memory), 4 bytes. W = access width, B = base address register (refer to table
8.4); 16 different access widths, 4 base address registers, 26 bits displacement.

8.2 Example 2: 32 bits, two functions

The instruction words contain address fields of intermediate length. Each instruction corresponds to a
complete operator. Some instructions can initiate two functions. The resource address space comprises
up to 4,096 parameters. The 12 resource address bits can also contain split resource addresses, for
example, for 1,024 resources with four parameters or 512 resources with 8 parameters. Applications:
high-performance general-purpose processors, special processors, complex processing devices in
FPGAs and the like. Fig. 8.2 provides an overview of the machine code, table 8.3 describes the
instruction functions. Table 8.4 shows how the access width W and the base address B are encoded.

Overview:

• Instruction length: 32 bits
• Resource address: 12 bits (flat address space)
• Resource type: 12 bits
• Immediate value: 16 bits
• Variable address (displacement): 14 bits, up to 4 base address registers (B)
• Encoding of access width: in the instruction; up to 4 variants (W)
• Special features:

• the y-operator can activate two resources at the same time
• the s-operator can select two resources at the same time

operator 31 29 27 25 23 12 11 0

y 0 0 x x 0 0 0 0 2nd resource (12) 1st resource (12)

y_f 0 0 x x 0 0 0 1 function code (12) resource (12)

c 0 0 x x 0 1 0 x 2nd resource (12) 1st resource (12)

d 0 0 x x 0 1 1 x 2nd resource (12) 1st resource (12)

s 0 0 x x 1 0 0 x 2nd resource type (12) 1st resource type (12)

r 0 0 x x 1 0 1 x 2nd resource (12) 1st resource (12)

l 0 0 W 0 0 1 x 2nd resource (12) 1st resource (12)

s_a 0 0 x x 1 1 1 1 resource address (12) resource type (12)

a 0 1 W B displacement (14) resource (12)

p 1 0 W B displacement (14) resource (12)

p_imm 1 1 W immediate (16) resource (12)

Fig. 8.2 Instruction formats.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 112

operator function

y initiate the information processing operations of the selected resources (yield). The fields
address the function code parameters of the respective resources. Value = 0: no initiation

y_f initiate the information processing operations in the selected resource according to the
selected function code. Function code = 0: no initiation. Application: for resources with
selectable functions

c establish a concatenation 1st resource => 2nd resource. The fields address an operand
parameter and a result parameter

d disconnect the concatenation 1st resource => 2nd resource; see also under c

s select up to two resources out of the resource pool according to the type fields. Value = 0: no
resource selected

r return the selected resources to the resource pool. The fields address the function code
parameters of the respective resources. Value = 0: no effect

l move data between the selected resources (link). 1st resource => 2nd resource. Current
access width encoded in W

s_a select (request out of the resource pool) a resource according to the type field and assign the
selected resource address. This resource address is the base of resource enumeration in
subsequent s-operators (+1 increment). Type = 0: no resource selected (but a resource
address other than zero will be assigned)

a store result from the selected resource into system memory (assign result). Resource =>
variable address in memory = <base B + displacement>. Current access width encoded in W

p fetch parameter out of system memory and move it into the selected resource (parameter
passing). Content of variable address in memory = <base B + displacement> => resource.
Current access width encoded in W

p_imm load immediate value into the selected resource (parameter passing). If access width W is
greater than 16 bits, the immediate value will be sign-extended

Table 8.3 Instruction overview.

W = access width:
• 1 byte
• 2 bytes
• 4 bytes
• reserved

B = base address:
• stack pointer (SP
• base pointer (BP)
• global pointer (GP)
• reserved

Table 8.4 Encoding of access width (W) and base address register selection (B).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 113

8.3 Example 3: 32 bits, long addresses

In contrast to example 2, the address fields of those 32 bit instructions are of 28 bit length. Application:
primarily for software emulation (virtual machines) in the upper performance range. It is not possible
to accommodate two address or data fields in a 32 bit word. To supply all the necessary parameters,
in the platform four buffer registers are provided that can be loaded with u-operators. Some operators
require therefore two instructions. The resource address space comprises maximally 256M parameters.
The 28 address bits can also accommodate split resource addresses, for example, for 16M resources
with 16 parameters or for 1M resources with 256 parameters. Table 8.5 shows how the buffer registers
are used. Fig. 8.3 provides an overview of the machine code, table 8.8 describes the instruction
functions. In table 8.9 it is shown how the access width W and the base address B are encoded.

Overview:

• Instruction length: 32 bits
• Resource address: 28 bits (flat address space)
• Resource type: 26 bits
• Immediate value: 26 bits
• Variable address (displacement): 24 bits; up to 4 base address registers (B)
• Encoding of access width: in the instruction; up to 8 variants (W)
• Buffering: four buffer registers

buffer register loaded with utilized by

1: address of variable u_va p

2: immediate value u_imm p_imm

3: resource address u_rs l, c, d, a

4: resource address counter u_ra s

Table 8.5 Buffer registers.

The arrangement of buffer registers enables, in contrast to the self-evident doubling of the instruction
length, often multiple utilization of the entered information:

• Transport of immediate value to several resources (p_imm).
• Transport of a variable to several resources (p).
• Assignment of a result to several variables (a).
• Transport of a result to several operands (l, c, d).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 114

operator 31 29 27 25 23 0

others (reserved) 0 0 0 0 *) res.

s 0 0 0 0 11 resource type (26)

r 0 0 0 1 resource (28)

p_imm2 0 0 1 0 resource (28)

y 0 0 1 1 resource (28)

l_2 0 1 0 0 resource (28)

c_2 0 1 0 1 resource (28)

d_2 0 1 1 0 resource (28)

u_rs 0 1 1 1 resource (28)

a_2 1 0 0 W B displacement (24)

u_va 1 0 1 W B displacement (24)

u_imm 1 1 0 W immediate (26)

p_2 1 1 1 0 resource (28)

u_ra 1 1 1 1 resource address (28)
*): Codes 00, 01, 10

Fig. 8.3 Instruction formats.

operator function

s select a resource out of the resource pool according to the type field. Assignment of the
resource address according to resource address counter (buffer register 4). Value = 0: no
resource selected

r return teh selected resource to the resource pool. The field addresses the function code
parameter of the respective resource. Value = 0: no effect

y initiate the information processing operations of the selected resources(yield). The field
addresses the function code parameter of the respective resources. Value = 0: no initiation

l_2 move data between the selected resources (link). 1st resource => 2nd resource. 1st parameter
according to buffer register 3, 2nd parameter according to address field. complete l-operator:
u_rs (1st resource); l_2 (2nd resource). Current access width encoded in W

c_2 establish a concatenation 1st resource => 2nd resource. 1st parameter according to buffer
register 3, 2nd parameter according to address field. Complete c-operator: u_rs (1st
resource); c_2 (2nd resource)

d_2 disconnect the concatenation 1st resource => 2nd resource;. 1st parameter according to
buffer register 3, 2nd parameter according to address field. Complete d-operator: u_rs (1st
resource); d_2 (2nd resource)

u_rs load the content of the address field into buffer register 3 (resource address)

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 115

operator function

a_2 store result from the selected resource into system memory (assign result). Resource =>
variable address in memory = <base B + displacement>. Parameter according to buffer
register 3. Complete a-operator: u_rs (resource); a_2 (parameter address). Current access
width encoded in W

pimm_2 load immediate value into the selected resource (parameter passing). Immediate value
according to buffer register 2. Complete p_imm operator: u_imm (immediate value); p_imm2
(resource). If access width W is greater than 16 bits, the immediate value will be sign-
extended

u_va load the variable address into buffer register 1

u_imm load the immediate value into buffer register 2

p_2 fetch parameter out of system memory and move it into the selected resource (parameter
passing). Content of variable address in memory = <base B + displacement> => resource.
Address of the variable according to buffer register 1. Complete p-operator: u_va (address of
variable); p_2 (resource). Current access width encoded in W

u_ra load resource address for s-operator into buffer register 4. This resource address is the base
of resource enumeration in subsequent s-operators (+1 increment). Complete s_a-operator:
u_ra (resource address); s (resource type)

Table 8.6 Instruction overview.

W = access width:
• 1 byte
• 2 bytes
• 4 bytes
• 8 bytes
• 16 bytes
• reserved

B = base address:
• stack pointer (SP)
• base pointer (BP)
• global pointer (GP)
• reserved

Table 8.7 Encoding of access width (W) and base address register selection (B).

8.4 Example 4: 16 bits, two functions

The principal instruction format layout of example 2 is applied to short instruction words of 16 bits in
length. The resource address is limited to 6 bits. Such a resource address could support, for example,
16 resources with four parameters each or eight resources with eight parameters each. Applications:
ReAl microcontrollers, small special processors, processing devices in FPGAs and the like. As the
limitation to 16 bits leads to short displacement and immediates, double-lengt hvariants of p-, p_imm.
and -operators have been provided. Fig. 8.4 provides an overview of the machine code, table 8.8
describes the instruction functions. For encoding of access width W and base address B refer to table
8.4.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 116

Overview:

• Instruction length: 16 or 32 bits, respectively
• Resource address: 6 bits (flat address space)
• Resource type: 12 bits
• Immediate value: 6 or 20 bits, respectively
• Variable address (displacement): 4 or 18 bits, respectively. Up to 4 base address registers (B)
• Encoding of access width: hardwired in the resources (in case of 16 bit instructions) or in

the instruction (in case of 32 bit instructions). Up to 4 variants
(W)

• Special feature: the y-operator can activate two resources at the same time

operator 15 12 11 6 5 0 15 2nd 16-bit-Wort 0

p_l 0 0 1 0 resource B displ. W displacement

p_s 0 0 1 1 resource displacement –

p_imml 0 1 0 0 resource immediate W immediate (14)

p_imms 0 1 0 1 resource immediate –

a_l 0 1 1 0 resource B displ. W displacement

a_s 0 1 1 1 resource displacement

l 1 0 0 0 2. resource 1. resource

c 1 0 0 1 2. resource 1. resource

d 1 0 1 0 2. resource 1. resource –

r 1 0 1 1 2. resource 1. resource

y 1 1 0 0 2. resource 1. resource

y_f 1 1 0 1 function resource

s 1 1 1 0 resource type (12)

s_a 1 1 1 1 resource type (12) resource (6)

Fig. 8.4 Instruction formats.

operator function

p_l fetch parameter out of system memory and move it into the selected resource (parameter
passing). Content of variable address in memory = <base B + displacement> => resource.
Long displacement (18 bits). Current access width encoded in W

p_s fetch parameter out of system memory and move it into the selected resource (parameter
passing). Content of variable address in memory = <base B + displacement> => resource.
Short displacement (4 bits). Access width depending on the particular resource (hardwired)

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 117

operator function

p_imml load immediate value into the selected resource (parameter passing). Long immediate (20
bits). Current access width encoded in W. If access width W is greater than 16 bits, the
immediate value will be sign-extended

p_imms load immediate value into the selected resource (parameter passing). Short immediate (6
bits). Access width depending on the particular resource (hardwired). The immediate value
will be sign-extended appropriately

a_l store result from the selected resource into system memory (assign result). Resource =>
variable address in memory = <base B + displacement>. Long displacement (18 bits).
Current access width encoded in W

a_s store result from the selected resource into system memory (assign result). Resource =>
variable address in memory = <base B + displacement>. Short displacement (4 bits). Access
width depending on the particular resource (hardwired)

l move data between the selected resources (link). 1st resource => 2nd resource. Current
access width encoded in W Zugriffsbreite gemäß Ressource oder fest)

c establish a concatenation 1st resource => 2nd resource. The fields address an operand
parameter and a result parameter

d disconnect the concatenation 1st resource => 2nd resource; see also under c

r return the selected resources to the resource pool. The fields address the function code
parameters of the respective resources. Value = 0: no effect

y initiate the information processing operations of the selected resources (yield). The fields
address the function code parameters of the respective resources. Value = 0: no initiation

y_f initiate the information processing operations in the selected resource according to the
selected function code. Function code = 0: no initiation. Application: for resources with
selectable functions

s select a resource out of the resource pool according to the type field

s_a select (request out of the resource pool) a resource according to the type field and assign the
selected resource address. This resource address is the base of resource enumeration in
subsequent s-operators (+1 increment). Type = 0: no resource selected (but a resource
address other than zero will be assigned)

Table 8.8 Instruction overview.

8.5 Example 5: 16 bits, longer addresses

The principal instruction format layout of example 3 is modified to short instruction words of 16 bits
in length, containing address fields that are appropriately shorter, but still useful. A resource address
of 12 bits could support, for example, up to 512 resources with eight parameters each. As each
instruction can contain only one address or data field, four buffer registers are provided, similar to
example 3, that can be loaded with u-operators. Some operators require therefore two instructions.
Applications: software emulation (virtual machines) in the performance range of typical embedded
systems, ReAl microprocessors and the like. Fig. 8.5 provides an overview of the machine code. For
more details refer to the tables 8.5 to 8.7 (example 3).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 118

Overview:

• Instruction length: 16 bits
• Resource address: 12 bits (flat address space)
• Resource type: 10 bits
• Immediate value: 11 bits
• Variable address (displacement): 9 bits; up to 4 base address registers (B)
• Encoding of access width: in the instruction; up to 4 variants (W)
• Buffering: four buffer registers

operator 15 13 11 9 8 0

others (reserved) 0 0 0 0 *) res.

s 11 resource type (10)

r 0 0 0 1 resource (12)

p_imm2 0 0 1 0 resource (12)

y 0 0 1 1 resource (12)

l_2 0 1 0 0 resource (12)

c_2 0 1 0 1 resource (12)

d_2 0 1 1 0 resource (12)

u_rs 0 1 1 1 resource (12)

a_2 1 0 0 W B displacement (9)

u_va 1 0 1 W B displacement (9)

u_imm 1 1 0 W immediate (11)

p_2 1 1 1 0 resource (12)

u_ra 1 1 1 1 resource address (12)
*): Codes 00, 01, 10

Fig. 8.5 Instruction formats. Instruction formats.

8.6 Example 6: 16 bits, some functions can be controlled in parallel

This example demonstrates that even short instruction words (16 bits) can control some functions in
parallel. The instruction set supports up to 64 resources with up to eight parameters each (split address
space). As the content of some operators has to be supplied in pieces, three buffer registers have to be
provided in the platform. These registers can be loaded by additional operators u_rs1, u_rs2 and u_ra.
The y-operator can activate up to 8 resources at the same time (by means of a bit mask). Applications:
ReAl microcontrollers and microprocessors, special processors, processing devices in FPGAs and the
like. Table 8.9 shows the content of the buffer registers. Fig. 8.6 illustrates the basic instruction format.
Table 8.10 describes the instruction functions. For encoding of base addres register selection (B) refer
to table 8.4.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 119

Overview:

• Instruction length: 16 bits
• Resource address: 6 bits (split address space)
• Parameter address: 3 bits
• Resource type: 10 bits
• Immediate value: 9 bits
• Variable address (displacement): 9 bits; up to 4 base address registers (B)
• Encoding of access width: in the resources (hardwired)
• Buffering: three buffer registers
• Simultaneous initiation of:

• two parameter transports between the resources
• two concatenation control functions
• activation of up to eight resources
• entry of two resource addresses into a buffer register

11 6 5 0

buffer register 1 1st source resource 1st destination resource

buffer register 2 2nd source resource 2nd destination resource

buffer register 3 – resource address

Table 8.9 Buffer registers.

operator 15 12 11 3 2 0

p 1 0 B displacement parameter

a 1 1 B displacement parameter

y 0 0 0 0 0 8 7 6 5 4 3 2 1 ress. sel.

others (reserved) 0 0 0 0 1 0 0 res.

s 0 0 0 0 1 0 1 resource type (9)

u_ra 0 0 0 0 1 1 resource address (6)

l 0 0 0 1 1st SP 1st DP 2nd SP 2nd DP

c 0 0 1 0 1st SP 1st DP 2nd SP 2nd DP

d 0 0 1 1 1st SP 1st DP 2nd SP 2nd DP

r 0 1 0 0 1st resource 2nd resource

u_rs1 0 1 0 1 1st source resource (6) 1st dest. ressource (6)

u_rs2 0 1 1 0 2nd source resource (6) 2nd dest. ressource (6)

p_imm 0 1 1 1 immediate (9) parameter
SP = source parameter; dp = destination parameter

Fig. 8.6 Instruction formats.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 120

operator function

p fetch parameter out of system memory and move it into the selected resource (parameter
passing). Content of variable address in memory = <base B + displacement> => parameter
in resource. The resource address is expected in buffer register 1 (1st destination resource)

a store result from the selected resource into system memory (assign result). Parameter in
resource => variable address in memory = <base B + displacement>. The resource address is
expected in buffer register 1 (1st source resource)

y initiate the information processing operations of the selected resources (yield). The field
ress. sel selects one group of eight out of the 64 resources supported. One of the eight
control bits (8...1) is assigned to each resource of the selected group. Control bit = 1: initiate
operation, control bit = 0: don't initiate operation

s select a resource out of the resource pool according to the type field. The resource address is
expected in buffer register 3. After resource selection, the content of buffer register 3 will
be incremented by one. Operator s_a can be emulated by an operator sequence u_ra
(resource address); s (resource type)

u_ra load the content of the address field into buffer register 3 (resource address parameter for the
s-operator). This resource address is the base of resource enumeration in subsequent s-
operators (+1 increment)

l move data between the selected resources (link). Up to two transport operations will be
executed: 1st source parameter => 1st destination parameter; 2nd source parameter => 2nd
destination parameter. The resource addresses of the 1st transport are expected in buffer
register 1, the resource address of the 2nd transport in buffer register 2. Source parameter =
0: no transport

c establish up to two concatenations.1st source parameter => 1st destination parameter; 2nd
source parameter => 2nd destination parameter. The resource addresses for the 1st
concatenation are expected in buffer register 1, the resource address for the 2nd
concatenation in buffer register 2. Source parameter = 0: no concatenation

d disconnect up to two concatenations. 1st source parameter => 1st destination parameter;
2nd source parameter => 2nd destination parameter. The resource addresses of the 1st
concatenation are expected in buffer register 1, the resource address of the 2nd
concatenation in buffer register 2. Source parameter = 0: no effect

r return up to two resources to the resource pool. Resource address = 0: no effect

u_rs1 load two resource addresses into buffer register 1

u_rs2 load two resource addresses into buffer register 2

p_imm load immediate value into the selected resource (parameter passing). If the access width of
the selected parameter is greater than 9 bits, the immediate value will be sign-extended. The
resource address is expected in the 1st buffer register (1st destination resource)

Table 8.10 Instruction overview.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 121

8.7 Example 7: 64 bits, many functions can be controlled in parallel

The last example demonstrates an instruction format that enables encoding of many parallel executable
functions. For this purpose, longer instruction words are required (64 bits). Similar to example 6, this
instruction set supports up to 64 resources with up to eight parameters each (split address space). The
platform contains three buffer registers. These registers can be loaded by additional operators u_rs1,
u_rs2 and u_ra. The y-operator can activate up to 60 resources at the same time (by means of a bit
mask). Applications: special processors, processing devices in FPGAs and so on. Table 8.11 shows the
content of the buffer registers. Fig. 8.7 illustrates the basic instruction word format. Fig. 8.8 contains
details of the parameter fields in the operators p, p_imm and a. Table 8.12 gives an overview over the
various operation codes. Fig. 8.9 illustrates the basic instruction format. Table 8.13 illustrates details
of the bit positions 59...0. Table 8.14 describes the instruction functions.

Overview:

• Instruction length: 64 bits
• Resource address: 6 bits (split address space)
• Parameter address: 3 bits
• Resource type: 10 bits
• Immediate value: 12 bits
• Variable address (displacement): 10 bits; up to 4 base address registers (B)
• Encoding of access width: in the resources (hardwired)
• Buffering: three buffer registers
• Simultaneous initiation of:

• 10 parameter transports between the resources
• 10 concatenation control functions
• activation of up to 60 resources
• entry of 10 resource addresses into a buffer register
• allocation of up to 6 resources
• returning of up to 10 resources to the resource pool

buffer register 1 s1 d1 s2 d2 s3 d3 s4 d4 s5 d5

buffer register 2 s6 d6 s7 d7 s8 d8 s9 d9 s10 d10

buffer register 3 ra 1 ra 2 ra 3 ra 4 ra 5 ra 6

Table 8.11 Buffer registers.

63 60 59 0

opcode addresses, immediate values or control information

Fig. 8.7 Principal instruction word format.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 122

operation 14 12 11 3 2 0

p, a B displacement (10) parameter

p_imm immediate (12) parameter

Fig. 8.8 Parameter fields in p-, p_imm- and a-operators. For encoding of base address register
selection (B) refer to table 8.4.

opcode format opcode format opcode format opcode format

0 y_1 4 res. 8 l C r

1 y_2 5 res. 9 p D s

2 u_ra 6 c A a E u_rs2

3 others *) 7 d B p_imm F u_rs1
*): reserved.

Table 8.12 Operation codes.

operator bits 59...0 (see Table 8.13 for details)

l, c, d s/d1 s/d2 s/d3 s/d4 s/d5 s/d6 s/d7 s/d8 s/d9 s/d10

r r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

u_rs1 s1 d1 s2 d2 s3 d3 s4 d4 s5 d5

u_rs2 s6 d6 s7 d7 s8 d8 s9 d9 s10 d10

y 60 control bits

p, p_imm,a parm1 parm2 parm3 parm4

s rt1 rt2 rt3 rt4 rt5 rt6

u_ra ra 1 (6) ra 2 (6) ra 3 (6) ra 4 (6) ra 5 (6) ra 6 (6)

Fig. 8.9 Instruction formats.

operator the bits 59...0 contain:

p 4 parameter fields (parm1...4) of 15 bits each. Refer to fig. 8.8

a 4 parameter fields (parm1...4) of 15 bits each. Refer to fig. 8.8

y_1 60 control bits for activation of the resources 59...0

y_2 60 control bits for activation of the resources 63...60 and 55...0

s 6 resource type fields (rt1...10) of 10 bits each

u_ra 6 resource addresses of 10 bits each (only 6 bits are utilized, respectively)

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 123

operator the bits 59...0 contain:

l, c, d 10 parameter address pairs (s/d1...s/d10) of 6 bits each. s = source parameter (3 bits), d =
destination parameter (3 bits)

r 10 resource addresses (r1...r10) of 6 bits each

u_rs1 5 resource address pairs (s1, d1...s5, d5) of 12 bits each (for buffer register 1)

u_rs2 5 resource address pairs (s6, d6...s10, d10) of 12 bits each (for buffer register 2)

p_imm 4 parameter fields (parm1...4) of 15 bits each. Refer to fig. 8.8

Table 8.13 The bits 59...0 in the various instruction formats.

operator function

p fetch parameter out of system memory and move it into the selected resources (parameter
passing). 4 operand transports content of variable address in memory = <base B +
displacement> => parameter in resource. The resource addresses are expected in buffer
register 1 (destination resources d1...d4). Parameter = 7: no transport

a store result from the selected resources into system memory (assign result). 4 result
transports parameter in resource => variable address in memory = <base B + displacement>.
The resource addressses are expected in buffer register 1 (source resources s1...s4).
Parameter = 7: no transport

y_1 initiate the information processing operations of the first 60 resources (59...0). One of the 60
control bits (59...0) is assigned to each of those resources. Control bit = 1: initiate operation,
control bit = 0: don't initiate operation

y_2 initiate the information processing operations of the last 4 and the first 56 resources (63...60,
55...0). One of the 60 control bits (59...0) is assigned to each of those resources. Control bit =
1: initiate operation, control bit = 0: don't initiate operation

s select 6 resources out of the resource pool according to the type fields (rt1...6). Resource
type = 0: no selection. The resource addresses are taken from buffer register 3. There is no
automatic address increment. Resources are to be selected always by sequences u_ra; s (like
the s_a operators of other examples)

u_ra load the content of the address fields into buffer register 3 (resource address parameters for
the s-operator)

l move data between the selected resources (link). Up to 10 transport operations will be
executed: source parameter => destination parameter (s1 => d1...s10 => d10). The resource
addresses for the first 5 transport operations (1...5) are expected in buffer register 1, for the
second 5 transport operations (6...10) in buffer register 2. Source parameter = 0: no transport

c establish up to 10 concatenations source parameter => destination parameter (s1 => d1...s10
=> d10). The resource addresses for the first 5 concatenations (1...5) are expected in buffer
register 1, for the second 5 concatenations (6...10) in buffer register 2. Source parameter = 0:
no concatenation

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 124

operator function

d disconnect up to 10 concatenations source parameter => destination parameter (s1 =>
d1...s10 => d10). The resource addresses of the first 5 concatenations (1...5) are expected in
buffer register 1, of the second 5 concatenations (6...10) in buffer register 2. Source
parameter = 0: no effect

r return up to 10 resources (r1...r10) to the resource pool. Resource address = 0: no effect

u_rs1 load 5 ressource address pairs into buffer register 1 (s1, d1...s5, d5)

u_rs2 load 10 ressource address pairs into buffer register 2 (s6, d6...s10, d10)

p_imm load 4 immediate values into the selected resources (parameter passing). If the access width
of the selected parameter is greater than 12 bits, the immediate value will be sign-extended.
The resource addresses are expected in the 1st buffer register (destination resources d1...d4).
Parameter = 7: no transport

Table 8.14 Instruction overview.

