
THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 72

1): A typical example: finding a suitable free resource when executing a s-operator.

6. Resource Management

6.1 Resource Management via Tables

At compile time as well as at run time the resources in a ReAl system require some administrative
activities. For this purpose, detailed information is required in regard to:

• The resource types available in the system.
• The properties of the individual resource types.
• The status of the resources (how many are provided, how many of them are available and so on).
• The resources assigned to the individual running program (task, thread, process or the like).

It is obvious to arrange this information in table structures. Similar problems are to be solved in
virtual memory and file system management1), during compiling and so on. The layout of table
structures and the corresponding access methods are general knowledge in the field of computer
science. Therefore, a brief description should be sufficient. Table entries can be accessed in different
ways:

• Via the proper name of the entry (given as a character string).
• Via the appropriate ordinal number.
• Via the corresponding address.

The following description refers to access by means of the ordinal numbers of the entries. This type
of access is only slightly slower than direct addressing (in order to determine the address based on the
ordinal number it is sufficient to carry out some simple calculations). Additionally, it will pose no
particular problems to provide access by name, too (for example, by some kind of hashing algorithm
– such functions are provided in any assembler or compiler).

There are three types of tables: the resource type table (one in the system); the resource pool table to
be provided as necessary (one for each resource type); and the process resource table (one in each
running program (process, task, thread).

Resource type table
The resource type table contains the descriptive and the administrative information in regard to the
individual resource types. It has one entry for each resource type. Such an entry contains:

• A general type identifier.
• Parameter data (parameters are operands and results).
• Administrative data.

The parameter data comprise:

• The number of parameters.
• A description of each individual parameter.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 73

The administrative data comprise:

• The number of all resources of the particular type.
• The number of resources currently available.
• The state of each individual resource. In the simplest case, one bit for each resource is sufficient

in order to differentiate between the states “available” and “unavailable." Sometimes it is
advantageous to also provide a reference to the program in which the resource is used.

Each parameter is described by the following data:

• Type identifier.
• Kind of parameter (operand, result or both).
• Information in regard to the concatenation control,
• The length in bits.

Fig. 6.1 provides an overview of the contents of a resource type table.

Fig. 6.1 The contents of a resource type table.

a) The resource type table as a whole. Each resource type has one entry.
b) The contents of an entry: type identifier, description of the parameters, administrative data.
c) Elementary administrative information concerns the number of available resources of this type and

provides information in regard to which of these resources is available. For example, this is
recorded in a bit string (one bit per resource).

d) The description of the parameters as a whole. Each parameter has an entry.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 74

1): For example, allocating memory or buffer space or moving the parameters via bus systems.

e) The contents of an entry: type identifier (elementary types are, for example, integers and floating
point numbers), kind of parameter, length, structural description (as needed). The length is
provided generally in bits, independent of the parameter structure. This facilitates decisions and
set-up activities1) (all parameters are in the end bit strings that must be transported and stored).
More complex parameters have additionally a structure description.

f) The kind of the parameter is described as follows: one bit each for the basic use (operand or result
or both) as well as concatenation information (characterizes whether a concatenation is possible
at all and provides the type of concatenation).

Table structures
Since the resources are different in their structure, there are table entries of different length. In
computer science, there are many solutions to problems of how to arrange such tables in practically
manageable data structures. Therefore, a brief description of an example will be sufficient.

The tables are comprised of a header that contains for each table entry a fixedly formatted information.
The table entries can be directly addressed. The header is followed by a variable part in which the
remaining information is stored. Each entry in the table header contains a pointer that points to the
corresponding area in the variable part. At the beginning of each area a backward link (reference) to
the table header is provided in order to support administration of the variable part (figs. 6.2 and 6.3).

Fig. 6.2 Resource type table format example.

Fig. 6.2 illustrates an of a resource type table:

a) shows the table structure as a whole.
b) shows an entry in the table header. In the example, it contains only a descriptor that describes the

assigned area in the variable part (address pointer, length information). Other implementations can
contain additional information, for example, in regard to the number and availability of the
resources.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 75

c) illustrates how one area of the variable part looks like; it contains the additional information to the
resource type (compare fig. 6.2).

Fig. 6.3 Resource type table, supplemented by function and accessibility control information.

The parameter entries can contain additional information for supporting the resource utilization and
administration. In the following, with the aid of fig. 6.3 two examples (function control information
and accessibility control information) will be explained briefly.

Function control information
Function control information serves to set up general-purpose resources that are able to provide several
functions to the respectively required function. They are two principles of function control:

1. The general-purpose resource is requested by means of s-operator and, by entering corresponding
control information (for example, by p-operators or u-operators), is set up to the respective
function. For example, a universal ALU is requested and by means of p-operator set up to an
operand width of 16 bits and to addition as the operation to be performed (when initiated via a y-
operator).

b) The individual functional variants are administered as separate resources. There are, for example,
8-bit adders, 16-bit adders and the like as well as specific resource types. When, for example, 16-
bit adders are requested via s-operators, a universal ALU is selected from the resource pool and
set up automatically (as an additional function of the s-operator) as a 16-bit adder.

In the second case, it must be differentiated between logical and physical resources. Both types are
listed in the resource type table. When the s-operator requests a logical resource (for example, a 32-bit
adder), it will find an entry that points to the respective physical resource (for example, a general-
purpose 64-bit ALU). This reference is contained within the function control information. Here it is
also indicated in which way the physical resource must be set up (for example, by function codes that
are to be loaded into certain registers).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 76

Accessibility control information
Accessibility control information concerns special operations that are required in order to transfer
parameters into the resources or to fetch them from the resources. The respective operators (p, a, l)
must initiate, depending on resource and the parameter, different control activities (for example,
certain bus systems or point-to-point connections must be requested, registers must be addressed and
so on). This holds true analogously for the concatenation operations. Appropriate information can
be stored in the resource type table. This information can be:

• Access control words, microinstructions or microinstruction sequences that control the information
flow in the hardware.

• Sequences of elementary machine instructions (for example, transport routines).
• Pointers pointing to to corresponding transport routines.
• Address information (for example, bus addresses of hardware registers).

If needed, for each type of access operation (p-operator, a-operator, l-operator, concatenation) special
information can be provided.

Ressource pool table
It can be that each individual resource is accessible in its own fashion (for example, at a special
address), so that not all resources of one type can be treated generally in the same way. To cope with
such peculiarities, for each resource type an additional resource pool table (fig. 6.4) can be provided
that contains the corresponding information in regard to each individual resource according to the
following principles:

• The general parameter descriptions (type, length and so on) are provided in the resource type table.
• The status and accessibility information is contained in the resource pool table. It can be optionally

supplemented by additional administrative information (providing data in regard to the frequency
of use, the number of accesses and the like).

Fig. 6.4 Resource type table together with a resource pool table.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 77

Fig. 6.4 shows a resource pool table in connection with the resource type table:

a) resource type table similar to fig. 6.2.
b) a resource pool table is provided for each different resource type and contains specific information

in regard to the individual resources.
c) the entries in the header of the resource type table contain two descriptors, one for the area in the

variable part of the resource type table and one for the corresponding resource pool table.

Emulating or building resources
Some resources are combined of other resources (recursion), some are not at all present as hardware.
Their function is instead emulated by software or by a microprogram. In addition, resources can be
generated on corresponding programmable integrated circuits as needed. The required information
can be stored, for example, according to fig. 6.4, in the resource type table. Fig. 6.5 shows an entry
in the variable area of a resource type table according to figs. 6.1 and 6.2. The entry is extended by
an area that contains the operator code for building the resource from simple resources (recursion),
a machine program or microprogram (emulation), or a corresponding circuit description (netlists,
Boolean equations, FPGA programming data or the like). The administration information of the
corresponding resource types contain a descriptor describing this area (start address, length). The
operator codes, machine programs etc. stored therein are typically templates with space holders that
are filled as needed with resource numbers or addresses (machine independent or logical coding).
Example: a resource is composed of four other resources. The stored operator code addresses these
resources via the consecutive numbers (ordinal numbers) 1, 2, 3, 4. Now, such a resource is to be built
actually. As components, the resources No. 11, 19, 28, and 53 are available. The operators must now
address resource 11 instead of resource 1 (replacement of the logical resource numbers by the physical
resource numbers).

Fig. 6.5 Details of a resource type table entry extended to support emulating the resource or
building it from more elementary resources.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 78

Process resource table
The process resource table (fig. 6.6) describes the resources that are requested by the respective
running program (process, task or the like). Each of these resources has an entry. This entry contains:

• The resource type (backward link).
• The consecutive number (ordinal number) of the resource of the corresponding type.
• Accessibility control information, for example, memory or hardware addresses, microinstructions

or pointers to transport routines. Such information is taken, as the function of the s-operator, from
the resource type table or the resource pool table and is optionally modified (for example, logical
addresses are replaced by physical addresses).

Fig. 6.6 Example of a process resource table

For a software solution (emulation), the accessibility control information is typically a pointer into the
resource emulation area. This is the memory area that contains the parameters as well as optionally
required working (scratch) areas. Often a single pointer is sufficient because the parameters are
addressed consecutively. However, sometimes a separate pointer for each parameter is required.

How the tables are used in the course of a ReAl program
The s-operator accesses the resource type table and finds therein an available resource. A consecutive
number (ordinal number) is assigned to this resource. Optionally, the required control information is
set up (function codes, operand width and so on). The information required for the additional operators
is transferred into the process resource table. The consecutive number of this entry is used as an
ordinal number by which all other operators reference this resource.

An example:

1. A 16-bit adder is required. The appropriate statement written in text code: s (ADD_16). In the
resource pool, this resource type has the consecutive number (ordinal number) 25. Therefore,
the s-operator in symbolic machine code is s(25).

2. The s-operator finds that the resource No. 6 of this type is available.
3. The resource is marked as being used (busy). Optionally, the resource is initialized by entering

function code settings for the required processing function.
4. The resource is entered in the next free position of the respective process resource table (resource

type 25, resource No. 6). The 11th position of the process resource table be free. Accordingly,
the ordinal No. 11 is assigned to the resource.

5. All p-operators, y-operators and so on relate to resource No. 11 and access with this value the
process resource table in order to obtain physical addresses and other accessibility control
information.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 79

1): The resource emulation area can be set up, for example, by emulating the s-operators at compile time.
This way the necessary information can be fetched from the resource type (refer to fig. 6.5).

In practice, these operations typically are performed at compile time and (partially) at loading.
Executable machine programs contain physical resource addresses and other accessibility control
information; they must not access tables.

Address translation in the case of software-based emulation
The process resource table is used only temporarily during compiling. The information nedded to
emulate the resource is stored within the resource emulation area1). All accesses at run time refer to
addresses in the resource emulation area. The resource emulation area can be arranged optionally in
hardware registers.

There are variants of the s-operator by which very specific resources can be addressed, for example,
the adder No. 22 or the special processor MAX by IP address 123.45.67.89.

6.2 How many Resources?

In order to be able to determine the format of the table structures, descriptive information and so on,
it is necessary to know how many resources, parameters etc. are to be taken into account. There are
basically two types of numbers with regard to the size of the resource pool:

1. Finite. Such numbers have a fixed upper bound. A particular upper bound is valid for a certain
implementation. Example: a processor with 16 processing units. Accordingly, no more than 16
processing resources can be assigned at the same time.

2. Transfinite. The number of resources is limited only by the limits of the addressing capability
of the descriptive data structures.

Resources emulated by software
The number of such resources can be essentially transfinite. It is limited only by the size of available
memory (resource emulation area); s-operators and r-operators control only the allocation of the
emulation area. Details of the resource management methods are a matter of system optimization. The
principal management task is closely related to the well-known problem in computer science of
managing free memory space including the so-called garbage collection, that is, to make available
again for utilization memory areas released piece by piece or to provide by appropriate data transport
a single contiguous free memory area.

An example of a management strategy:
Garbage collection is initially not used. With each s-operator only available memory space is assigned
and the function of the r-operators is limited to simply registering the released memory area. A
garbage collection takes place only at characteristic points in the program operation, for example,
when a certain program branch actually terminates and is not executed again. The memory
management could be, for example, supported by corresponding h-operators and u-operators.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 80

1): Or appropriate universal operation units which can be set up to execute the required operations,
respectively. For comparison, refer to the operations provided in the typical conventional instruction
sets ([15]).

2): For example, the multiplication and division of binary numbers.

3): In contrast to cellular machines and the like.

4): Or appropriate universal operation units which can be set up to execute the required operations,
respectively.

5): For example, a length of 16 bits corresponds to 216, a length of 32 bits to 232 values and so on. Some
implementations may have appropriate limitations, however (for example, to 40 address bits of 64
address bits).

Resources implemented as hardware
The number of hardware resources is essentially finite. Each resource must be managed individually
(at least it must be stated whether it is available or not).

Some estimates related to cardinalities (like address length, numbers of resources and so on):

1. ReAl processors similar to conventional superscalar machines:

• 64 to 256 resource types (= different types of operation units for executing machine
instructions1)).

• Not more than 4 to 8 parameters. Simple operations take two operands and generate a result plus
some kind of condition code, flag bits or the like. Some operations that are usually considered
to be elementary require a few more parameters2).

• 16 to 256 active resources. Cconventional superscalar machines have typically 4 to 16 operation
units. Future large-size circuits can contain, for example, 4 to 16 conventional processors whose
resource configuration corresponds to 4 to 16 processing units each, respectively.

2. Massively parallel processing based on conventional operations3):

• 64 to 256 resource types (= different types of operation units for executing machine
instructions4)).

• Not more thane 4 to 8 parameters (see above).
• Number of active resources: transfinite in theory, large in practice (for example, 1k to 64k).

3. Emulation (by software):

• Number of resource types: transfinite.
• Parameters: resources of different sizes, for example, 4, 8, 16, 32, 64, 512, 4k, and transfinite.

Experience has shown that more than 4k parameters practically do not occur; most functions have
fewer than 64 parameters ([12]).

• Number of active resources: transfinite.

The meaning of the word "transfinite":
In a ReAl machine, a transfinite number is limited only by the length of its binary representation which
can vary from implementation to implementation. It must be assumed that an address space or a range
of values defined by a particular address length or data width will be completely used up5).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 81

1): In fact, this is the principal way conventional processor architectures work. In contrast to ReAl
architectures, those steps are executed implicitly within the hardware, without need for programmed
control. As the conventional instructions do not contain appropriate control information, they are
obviously shorter (but the lengthy ReAl operator sequences will pay off . . .).

2): A base block ends with an branch or with a subroutine call. Base blocks in conventional machine
programs comprise typically fewer than 10 instructions.

6.3 Enumeration of resources

To the resources, consecutive numbers (ordinal numbers) are assigned when they are selected out of
the resource pool (s-operator). All further operators then refer to the assigned numbers. Typical
problems of the assignment:

• The conversion of these numbers into addresses or into other accessibility control information
of the hardware, for example, in access control words.

• The treatment of resources that have been released (returned to the resource pool) in the
meantime (r-operator).

Methods of resource enumeration:

1. The resources are consecutively enumerated when selected from the resource pool (s-operators).
2. The enumeration can be controlled by u-operators (for example, by setting an initial value).
3. The ordinal number or address is included in special variants of the s-operator (s_a operators):

s_a (resource type => resource number or address).

Enumeration and the releasing of resources (r-operator):
To change the enumeration of the still selected resources as a consequence of each r-operator would
lead to a considerable administrative overhead. The alternative: the consecutive enumeration in the
s-operators is continued independent of whether in the meantime resources have been released or not.
Released resources can be reassigned without difficulty; they simply obtain the higher consecutive
numbers. Enumeration begins anew only when the actual configuration of resources has been
completely returned to the resource pool (for example, at the end of the program).

6.4 Requesting and Releasing Resources

There are obviously no advantages to request resources individually, to use them and return them to
the resource pool immediately1). In order to utilize the inherent parallelism to the maximum, it would
be best to request all resources required for a certain program at once and to operate them in parallel
as much as possible (the program begins with an s-operator that requests all required resources and
ends with an r-operator that releases all resources). However, this is not always possible (limited
number of hardware resources, limited memory capacity). Therefore, the resource utilization is to be
organized essentially piece by piece. Obvious spots where a complex program can be divided into
easily manageable blocks are:

• Individually compiled program modules including the functions called therein.
• Regular program constructs (conditional statements, loops and the like).
• Program blocks (that which in conventional programming languages is between BEGIN and END

or between curly brackets) including the functions called therein.
• Base blocks (linear sequences of data transports and operation)2).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 82

For the respective program block all resources are requested, utilized and released again. An obvious
assignment algorithm starts with the base blocks. If resources are still available in the resource pool
after the current base block has been translated into an appropriate configuration of resources, the
subsequently called function can be taken into consideration, for example.

6.5 Resource Addressing

It is a well-established principle to operate only at compile time with ordinal numbers but at run time
with addresses. In byte codes and machine codes resources and their parameters are to be addressed.
Two variants of address space layout are available (fig. 6.7):

• Split resource address space: independent addresses for the resources and for the parameters
within the resource,

• Flat or unified resource address space: a single address that points to a certain parameter within
a certain resource.

Fig. 6.7 Addressing of resources. a) split, b) flat or unified addres space.

The split resource address space (fig. 6.7a)
There are two types of addresses: one selects the respective resource (resource address) and the other
the parameter within the resource (parameter address).

Advantages:

1. Most resources have only a few parameters (typically, 3 to 8). When the resource address is
correspondingly buffered (for example in a buffer register), only the parameter addresses must
be included in many operators.

2. Shorter address fields in y-operators and r-operators (only the resource address has to be
included, but no parameter address).

3. Simplified address decoding in the interior of the resource (compared to conventional solutions
in conventional microcontrollers, peripheral integrated circuits and the like).

4. Addressing of parameters in the interior of the resources is independent from addressing the
resources as a whole.

Disadvantages:

1. More complex machine code (because two address types must be supported).
2. Buffer registers or other buffering means are required.
3. The parameter address must be long enough to support the resources having the most parameters.

This means wasted address bits for all those resources that have only a few parameters. When
different parameter address lengths are provided to solve this problem, the machine code becomes
even more complex.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 83

1): For example, an appropriate bus system will need fewer address lines, but additional signal lines are to
be provided to carry the type information.

2): When, in order to simplify the decoder hardware, the address decoding is restricted to address ranges
(like on the PCI bus), unsatisfactory utilization of the address space can result (which can lead to the
problem of having to extend the addresses even more).

The parameter address in the split resource address space – two alternatives:

1. Independent addressing of operands and results. Depending on the respective operator, the
parameter address selects either an operand or a result. In p-operators operands are addressed;
in a-operators results are addressed. In l-operators, c-operators, and d-operators, the first
parameter address selects a result and the second one an operand, respectively. Function code
registers and the like are to be addressed only at the time the resource is set up to its currently
selected function (s-operator). The y-operator typically must address only the resource; a
parameter address is not required.

 2. Unified addressing of operands and results. The parameter address covers all parameters.

Independent addressing typically saves one bit in each address field. Example: there are 4 operands
and 3 results. Independent addressing requires 2 bits, unified addressing 3 bits. However, this leads
sometimes to a more complex hardware, as not only the address must be supported, but also the type
of the address1). Special functions would have to be optionally added to the machine instruction set
(for example, special variants of the c-operators and the d-operators would have to be provided for
supporting the input concatenation).

A further approach to reduce code size can be based on that the resources typically have more operand
parameters than result parameters. Accordingly, for the results a shorter address can be provided than
for the operands.

The flat or unified resource address space (fig. 6.7b)
There is a single address space in which a certain address is assigned to each parameter of each
resource (consecutive addressing).

Advantages:

1. More straightforward machine code.
2. The unified linear address space is a proven architecture principle.
3. A sufficient address length enables supporting arbitrary resources with arbitrary numbers of

parameters in a simple way.

Disadvantages:

1. The address fields are longer. So will be the machine instructions.
2. For each individual parameter the address must be decoded in full length. Hence address

decoding hardware will be more complex2.
3. Higher administration overhead when resources are selected and released at run time (dynamic

resource management).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 84

Which magnitudes are to be expected?
Depending on the system configuration, technology and area of application, different sizes of resource
address spaces will result. Table 6.1 shows a few examples.

resources parameters address length1) remarks

4 4 or 82) 4 or 5 bits superscalar machines of conventional size

32 4 or 82) 7 or 8 bits expanded superscalar machines, emulation by
software to run on microcontrollers

64 4, 8 or 162), 3) 8 to 10 bits expanded superscalar machines, FPGAs,
emulation by software to run on
microcontrollers

256 8 or 162), 3) 11 or 12 bits FPGAs, emulation by software to run on
microcontrollers

1024 8 or 162), 3) 13 or 14 bits FPGAs (very large), parallel processing
systems, software solution to run on
microcontrollers

64k 16 20 bits run time environment on high-performance
computers; compiler target (for example, for
conventional C -programs)

1024k 64 26 bits large-scale software-based systems (for
program development and the like)

Table 6.1 Typical resource addresses (some examples).

Which kind of resource addressing should be chosen?

• There are only resources with comparatively few parameters: split address space.
• There are only resources of the same type: split address space or activation by access control

words (1-out-of-n encoding instead of (binary addressing)
• There are different resource types including resources with many parameters: flat address space.

1) The number of bits that are required for address encoding (ld number of resources (resource address)
+ ld number of parameters (parameter address)).

2) Simple arithmetic logic units (calculatincg A op B => C) do not have more than three operands (A,
B, function code) and two results (C, flags). When the function is initialized at the time of selecting
the resource (s-operator), only two operands (A, B) must be addressed. It is then possible to only use
one bit for split addressing or two bits for unified addressing, respectively. When the function code is
provided as a parameter, in the case of unified addressing three bits are required and in the case of
split addressing 2 bits for the operands and 1 bit for the results are required. For addressing a more
powerful arithmetic logic unit, typically three bits are sufficient. For a corresponding configuration
(function code is no parameter, some of the memory access operations are eliminated) it is possible to
use only two bits, respectively, for split addressing (operands A, B, C, D; results X, Z; flags).

3) By means of an additional address bit up to 16 parameters can be addressed. This is sufficient for
many special processing units and for resources that correspond to typical functions in C programs
(most of those functions have fewer than 16 parameters).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 85

1): Refer to the addressing within I/O circuitry and on bus systems (including those with plug-and-play support).

6.6 Addressing of Variables

In addition to the resources and their parameters, the program variables must be addressed. The
variables are typically stored in the system memory, in memory means of the platform and the like.
They are loaded as operands into the resources or overwritten with results of the resources. Such
transports are carried out by the platform (for example, by means of p-operators and a-operators), but
can also be carried out by corresponding resources.

Variable addressing by the platform
Usually it is sufficient to provide for supporting the well-known access principles of the run time
systems of conventional higher programming languages:

• Address calculation according to the principle base + displacement.
• The base address registers comprise at least a frame or base pointer (FP/BP), a stack pointer (SP),

and an additional (auxiliary) pointer register.
• The stack frame organization of typical (C-type) run time environments is supported, including

the entry into and exit from subroutines (functions ENTER and LEAVE).

6.7 Addressing Resources Implemented in Hardware

Each parameter corresponds typically to a register. Addresses are basically ordinal numbers (selection
of the 1st, 2nd, 3rd register and so on). Often, it is sufficient to assign particular fixed addresses to the
individual registers. More advanced resources can be equipped with special configuration registers
through which the respective addresses can be set. Simple address decoders can be, for example, AND
gates that are connected (directly or inverted, respectively) to the respective address lines or
comparators that are connected to the address lines and to address setting means which provide the
corresponding address values. An alternative to this is the central address decoding in the platform.
All address decoders are located in the platform; the load control inputs of the memory means at the
input side and the output enable inputs of the memory means at the output side of the resources are
connected to the address decoder of the platform1).

Parameter addressing in a hardware resource
Fig. 6.8 illustrates the parameter addressing in a hardware resource. Each parameter register has an
address comparator 1 with address setting means 2. This can be a hardwired address or an address
register that can be loaded by configuration access cycles. The outputs of the address comparator 1
are connected to load control inputs of the operand register or to output enable inputs of the result
register. The destination of the parameter that is to be overwritten is laid onto the operand address bus,
the source of the parameter to be read is laid onto the result address bus. When one of the address
comparators1 recognizes that the supplied address corresponds to the set address 2, the corresponding
access function is carried out (loading of an operand register from the operand bus, driving result data
onto the result bus).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 86

1): The conversion of conventional bus protocols into protocols of a bit-serial high-speed transfer poses no
principal problems (refer, for example, to the serial bus system PCI Express).

Fig. 6.8 Parameter addressing in a hardware resource. 1 - parameter address comparator; 2 -
parameter address setting.

Moving parameters between resources
Fig. 6.9 shows the parameter transport between two resources with the aid of an l-operator. The
resources are configured according to fig. 6.8. The result of the resource B becomes the first operand
of the resource A (l-operator). In detail:

a) The source address (SOURCE) is laid onto the result address bus. The corresponding address
comparator 1 in resource B is activated. As a result of this, the content of the result register is
driven ontothe result bus.

b) The destination address (DEST) is passed to the operand address bus. The corresponding address
comparator 1 in resource A is activated. As a result of this, the data on the operand bus are
loaded into the respective operand register.

The principle can be applied analogously to serial interfaces that are connected, for example, to
switching hubs1.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 87

Fig. 6.9 Parameter transport between two resources. 1 - address comparator.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 88

1): For the structure of a split resource address refer to fig. 6.7.

2): Refer to the typical microprocessor bus systems.

Address decoding supporting a split address space
Fig. 6.9 illustrates the parameter addressing in a resource addressed via a split address space. The
arrangement comprised of address comparator 1 and address setting 2 is provided only once within
the entire resource. The address comparator 1 is connected to the resource address, the address
decoder 3 to the parameter address1). The outputs of the address decoder 3 are connected to the load
inputs and output enable input of the parameter registers. If the resource address matches the address
settings 2, the address comparator 1 enables the address decoder 3.

Fig. 6.10 Parameter addressing via a split address space. 1 - resource address comparator; 2 -
resource address setting; 3 - parameter address decoder.

For sake of simplicity, fig 6.10 shows common address and control lines for input and output
(parameter address bus, control bus). The data paths can be combined in a bidirectional data bus2).
In fig. 6.10 the decoding of a unified parameter address is illustrated. For this purpose, a single
address decoder 3 is provided that serves the operand registers as well as the result registers. For
decoding split parameter addresses two address decoders are required, one for the operand registers
and one for the result registers. The enable inputs of these address decoders must be connected
additionally to the respective access control signal.

Addressing and initiation by means of access control words
Fig. 6.11 shows an alternative configuration. The resources are not activated by a binary address but
by access control words. This can include the operation initiation (y-operator, concatenation) as well
as parameter transfer. An access control word acts at the same time on several resources. In one such
control word the functions of several operators can be combined. If this principle is applied to the last
extreme, a control word can initiate all the transport and processing operations that can be performed
actually at the same time in all resources.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 89

Fig. 6.11 Resource addressing and initiation by means of access control words.

In the example of fig. 6.11 the access control word has one bit position for each resource and
operation. The functions of the individual bits:

• 1.Op: load parameter of operand bus into the first operand register of the resource.
• 2.Op: losd parameter of operand bus into the second operand register of the resource.
• Y: initiate operation,
• Res.: drive result onto the result bus.

These bits have a common control field (Comm.Ctl.). Here the following functions are encoded:

• Drive a data word for the system memory onto the operand bus.
• Store the result.
• Drive a result from the result bus onto the operand bus (similar to fig. 6.9).
• Select the next control word (for example, by consecutive addressing, branching or subroutine

call).

In Fig. 6.11 one of the simplest system structures (one bus system with two data paths) is illustrated.
At one time only one operand and one result can be transported. The operand can be input at the same
time in any number of resources. More advanced systems can have several bus structures or switched
point-to-point connections. Then the control words contain address fields instead of the individual bits.

6.8 Addressing Resources Implemented in Software

Each parameter corresponds typically to a memory position (for example, a word as defined in the
particular processor architecture). The well-known principles of memory addressing and memory
management can be applied easily to resource addressing. Fig. 6.12 illustrates how parameters in the
memory can be addressed.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 90

1): It is well known that typical superscalar processors accelerate or execute in parallel only simple
instructions, whereas the more complex instructions are executed the conventional way (under
microprogram control).

Fig. 6.12 Parameter addressing in memory. a) flat, b) split address space.

It is a matter of course to place the resources on consecutive memory positions. Obviously, addressing
within a flat resource address space can be done according to the straightforward principle base +
displacement (fig. 6.12a).

To support a split resource address space requires a somewhat more complex scheme of address
calculation(fig. 6.12b). An address calculation that goes beyond the principle base + displacement is
however not supported at all by conventional processors or only unsatisfactorily, resulting in lower
processing speed1).

It is possible in principle to incorporate memory areas that are allocated to resources into a virtual
memory organization. Resources that are currently not utilized can be swapped out to the secondary
storage. In this way, for the emulation of the resources a memory address space in the magnitude of
the entire architecture-based address capacity is available. ReAl operating systems can specifically
provide virtual address spaces for the resource emulation (for this purpose, it is only required that a
proper set of address translation tables (page tables) is managed for each address space).

Moreover, it is possible to store complete resource allocations as files and to load them for the purpose
of execution. The resource structure must therefore be built only once (with s-operators and c-
operators). For each following invocation a simple loading procedure is sufficient. Such pre-
manufactured structures can be generated by the program developer and can be delivered completed
within the corresponding software so that at the user site the corresponding s-operators and c-operators
must not be executed.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 91

6.9 Stateless Resources and Resources with States

The resources differ from one another furthermore in that they either are stateless or have a state. The
term “state” is to be understood in the context of the general programming model. A program is at any
given time in a given processing state. In the case of interruptions, task switching and so on, this state
is to be saved. When the program operation will be resumed again, the saved state is to be restored.
Designing a ReAl system poses the problem to decide whether or not to include the resources into the
processing state. There are two alternatives:

1. Resources with states
The information stored in the resources belong to the processing state or the program context. When
a resource is included into the processing state, this has the following consequences:

• The information stored in the resource is to be saved in the case of interruptions, task switching
and so on, and, at a later time, to be restored, requiring corresponding access paths and the like
and increases latency of the context switching.

• The memory means in the resources (for example, registers) are memories according to the
programming model, hence it is possible to keep variables, intermediate results and the like in the
resources alone (there is no need for saving them into the system memory, for example).

• Results can be fed back to inputs of the same resource (INOUT parameter; fig. 6.13).
• Concatenation can be used without restrictions.
• Interruptions, task switching and so on can be carried out anytime, in other words, without having

to consider the internal processing state of the resources; all processing operations that take
longer (for example, than a few microseconds) can be interrupted anytime.

If concatenation is applied to the extreme, there are practically no local variables that must be
especially saved in the corresponding memory areas (for example, stack frames). Also, the
corresponding transport instructions for storing and fetching again of intermediate results (a-operators
and p-operators) are no longer required.

Fig. 6.13 Resources with states. a) a result is used as an operand in the next operation (local
feedback); b) a parameter can be an operand as well as a result (INOUT type).

2. Stateless resources
These resources are not included into the processing state. A resource is referred to as stateless when
it does not store its parameters beyond the respective actual processing operation; in other words, it
is essentially acting as a combinational circuit. This has the following consequences:

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 92

• The information stored in the resource is not saved when interruptions, task switching and the like
occur. Hence corresponding access paths are not required and the latency of the context
switching is comparatively small.

• All variables, intermediate results and so on are to be kept within the main memory (system
memory).

• There are no parameters that at the same time are inputs and outputs (INOUT). No input can be
read back, no output can be overwritten (by entering operands).

• Concatenation can be used only to a limited extent (for example, for fetching operands and for
storing results).

• Before initiating a y-operator all inputs must be always entered anew. This concerns also those
values that are unchanged since the execution of the previous y-operator.

• Interruptions or task switching can take place only after the results of the processing operations
initiated in the resources have been transferred into the main memory. Also, all operations that
have been initiated by concatenation must have been terminated. No processing operation is
interruptible in itself.

The selection of the configuration typically depends on whether primarily short latency or high
processing efficiency is important. The problem in question occurs only when the resources are to be
used for multiple purposes, for example, for interrupt handling or for execution of several tasks in time
slices.

Resources with states require time for saving and restoring but the processing operations are
interruptible at any time and during processing fewer memory accesses are needed. When the
resources are stateless, saving and restoring is not necessary, but the processing operations are not
interruptible and, overall, more memory access operations are required.

When minimal latency is required, it is to be investigated, which activity takes longer: saving and
restoring or terminating all processing operations including the additional memory access cycles for
fetching operands and for saving the results.

When maximum performance is desired, typically resources with states are to be preferred because
only this configuration makes it possible to concatenate the resources without limits, to feed back
results to inputs, and to utilize the internal memory means for storing data. In order to reduce latency,
the resources with states can be equipped with enhanced memory means (fig. 6.14).

Fig. 6.14 shows a simple processing resource that calculates a result based on two operands. The
operand and result memories however are no simple registers but addressable memory arrays that are
implemented, for example, with register or RAM arrays. The memory addresses are supplied from
outside, for example, from the platform. To each task (each interrupt level) a memory position is
allocated. The memory positions with which the resource operates are selected by means of the
ordinal number of the task (Task No.) or the interrupt level. Task switching or interruption only means
delivering the corresponding ordinal number. Such memory arrays cannot be too large (nominal
value: 4 to 64 memory positions) because the access time would otherwise be too long (which would
require that the clock rate is lowered or pipeline stages are added). One solution is to transfer of
memory contents that currently are not in use via independent access paths (in fig. 6.14: save/restore
bus) into the main memory and, as needed, to retrieve them out of the memory again (restore
operation). These operations can take place parallel to the current processing operations.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 93

Fig. 6.14 A Processing resource with states containing addressable memory arrays instead of
simple registers.

Fig. 6.15 shows how the principle illustrated in fig. 6.14 (the operand and result registers are memory
arrays that can be addressed from the outside) can be used in order to implement with one processing
unit more than one resource (cost reduction). For this purpose, the operand and result registers (A1,
B1, X1 and so on) are supplemented by function code registers (FC1, FC2 and so on). These register
arrays are addressed by resource addresses that are supplied, for example, by the platform. Each
resource address selects a set of operand and result registers as well as a function code that selects in
the operation units the functions of the respective resource type. Example: the first resource (A1, B1,
X1, FC1) carries out additions, the second resource (A2, B2, X2, FC2) carries out AND operations.

Further modifications:

• Independent address paths for the operand and result registers. In this way, l-operators and
concatenations can be accelerated.

• Combining the addressing and operation modes according to figs. 6.14 and 6.15. The memory
configuration (operand registers, result registers and so on) can be used alternately in order to
support the execution of different tasks or in order to provide the running task with several
processing resources.

The fig. 6.16 and 6.17 illustrate a program-controlled switching between these two modes of operation.
For this purpose, the address of the memory arrays shown in fig. 6.15 is a combination of a task
address and a resource address. The program controls how many address bits are supplied by the task
address and how many by the resource address. In this way, one has the possibility of assigning few
resources to many tasks, respectively, or of assigning many resources to a few tasks, respectively.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 94

Fig. 6.15 A processing unit capable of implementing more than one resource.

Fig. 6.16 The two addressing modes shown by an example of a 5 bit address.

a) The entire 5 bit address. It can support up to 32 parameter positions. The save address (compare
fig. 6.14) that is supplied by the save/restore bus comprises all address bits so that all memory
positions can be incorporated into saving and restoring.

b) Address combination for supporting 4 tasks (2 address bits) and 8 resources for each task (3
address bits).

c) A control register that controls the address combination. Each address bit position is selected
individually: 0 = bit is coming from the resource address, 1 = bit is coming from the task number.

Fig. 6.17 shows a corresponding circuitry. Resource address and task number are supplied to data
selectors whose selection inputs are connected to the outputs of the control register illustrated in fig.
6.16c. A further data selector enables the save address (refer to fig. 6.16a) to be gated to the combined
address in order to facilitate saving and restoring of resource register contents. The combined address
corresponds to the resource address of fig. 6.15.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 95

Fig. 6.17 An example resource address selection circuitry.

6.10 Virtualization of Hardware Resources

It is one of the basic principles of the ReAl architecture to consider the resource pool as unlimited.
Because the number of resources is however always limited in practice, there is sometimes the necessity
to carry out operations that require an almost unlimited resource pool with a limited number of
resources. This will be described in the following in more detail. There are in principle three types of
limitations:

1. The addressing capability.
2. The memory capacity.
3. The number of hardware resources (for example, operation units).

The addressing capability limits principally the size of the resource pool (the resource pool is not
infinite but transfinite). The resources that are taken from such a pool will be referred to in the
following as virtual resources.

The actually usable memory capacity can be expanded using well-know principles of virtual memory
organization to the limit of the addressing capability.

The number of actually usable physical processing resources will be always comparatively small
(magnitude, for example, 22 to 212 compared to typical address spaces of 232 to 264).

The information processing operations are sequentially carried out by means of actually present
(physical) resources (serialization). For this purpose, conventional machine instructions,
microinstructions or the like can be used (emulation). This corresponds to the principles of operation

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 96

of conventional general-purpose computers. In another variant the physical resources carry out the
information processing operations of several identical virtual resources (virtualization).

For all selected virtual resources, working areas are provided in the memory. These working areas can
be included into a virtual memory organization as it is supported by modern operating systems. When
an operation is to be carried out, the operands held in memory are transported into a corresponding
hardware resource. The results are returned optionally into the memory. There are different variants
for implementing this principle:

• The transport operations are programmed. The compiler adds optionally corresponding transport
instructions (translation at compile time).

• The transport operations are part of the respective operators. For this purpose, the operation
control circuits can be implemented, for example, as microprogrammed control units.

• Processing resources are embedded in cache memory arrays so that the transports are carried out
according to conventional principles of cache operation. In this way, it is also ensured that
unnecessary transports are avoided (when the memory area of the corresponding virtual resource
is present already within the cache, a cache hit results and the processing resource can become
active immediately).

• Processing resources are furnished with addressable memory arrays similar to figs. 6.14 and 6.15.
Such a processing resource corresponds for example to 2 to 8 virtual resources wherein one of the
virtual resources is active at a time. Entering operands and transporting results can be carried out
parallel to the processing operations being performed in the respectively active resource (compare
the save/restore bus in fig. 6.14).

• The processing resources have their own associative hardware (fig. 6.18).

Fig. 6.18 Resource with built-in virtualization support.1 - resource address comparators (1a logical;
1b physical); 2 - resource address setting (2a logiccal, 2b physical); 3 - parameter address decoder;

3a - parameter address selector (selects logical or physical address).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 97

The resource illustrated in fig. 6.18 is essentially a modification of the resource shown in fig. 6.10.
Address comparator 1b and address setting circuitry 2b act in the way described in connection with fig.
6.10. They are used for decoding the physical resource address. In addition, an address comparator 1a
and an address register 2a for the address of the respectively correlated virtual resource are provided
(logical address). The output signal of the "logical" address comparator 1a is connected to a new bus
line ADRS HIT. There are also physical and logical parameter addresses. To feed the right parameter
address to the decoder 3, an additional selector 3a has been provided. There are two ways of accessing:

1. Physical access via address decoder 1b. The address is fixed (it is either unchangeable or it is set
during the hardware configuration process after power-on). The address length is not very large
(for example, 6 bits when a total of 64 resources are provided). The address selector 3a sends the
physical parameter address to the parameter address decoder 3.

2. Logical access with a virtual resource address by address decoder 1a. Such address information
can be long (for example, 32 to 64 bits). The address selector 3a sends the logical parameter
address to the parameter address decoder 3. The respective logical address must be loaded prior
to this, by means of physical accesses, into the address register 2a. For this purpose, the address
register 2a is connected like an additional operand register to the parameter bus and to the
parameter address decoder 3 (load control signal LOAD LOG. ADRS). When upon access with
a certain logical address the address comparator 1a becomes active, it excites the bus line ADRS
HIT, and the circuitry acts as the corresponding virtual resource. When upon accessing with a
virtual resource address ADRS HIT remains inactive, one of the hardware resources must be
assigned to the respective virtual resource. Procedures for selecting a suitable hardware resource
as well as for swapping operands and results are well known (refer to conventional cache
memories and virtual memories).

The respective access mode can be selected, for example, by means of different instruction or operator
formats. In the extreme, all operators are provided twice (logical and physical). In an alternative
configuration the access mode can be made dependent on the system state. For example, typical
conventional architectures know at least two states: user state and supervisor state. Obviously, the user
state corresponds to the logical and the supervisor state to the physical access mode.

6.11 Instrumentation

In computer systems architecture, instrumentation means to provide systems with additional provisions
for system management, for efficiency measurement, for debugging and so on. There are different ways
to provide such functions in ReAl systems:

• The resources are expanded with additional devices (figs. 6.19 to 6.21).
• Special resources for this purpose are provided (fig. 6.22).
• Corresponding arrangements are generated ad hoc by connecting appropriate resources (fig. 6.23).

Fig. 6.19 shows how a simple parameter (for example, a binary number) can be supplemented by
additional information. Each of the entries shown corresponds to a register (in the hardware) or a
memory position (in the resource emulation area).

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 98

Fig. 6.19 A parameter within a resource. An example showing a rather extreme layout.

The run time systems of many programming languages support only the current value. The values
above support the implementation of appropriate programming languages (example: Ada). The
compare value is provided for debugging purposes. Example: stopping of program operation (in order
to examine and display program states, current values of variables and the like) if the parameter is of
a certain actual value. The usage counter can be used, for example, in order to determine how many
times the parameter has been used in processing operations or how much time has passed between two
new computations.

Fig. 6.20 illustrates a resource with built-in debugging provisions. A simple iterator is expanded by a
comparator that compares the generated memory address with a set value and signalizes a stop
condition if values are identical (compare match). Analogously, the resources can be provided with
circuitry for monitoring value ranges, with metering counters and so on.

The stop addresses, range information, counter values an so on can also be set and transported like the
usual operands and results. They are simply viewed as additional parameters. This requires however
a corresponding expansion of the parameter address space and thus more address bits in the machine
code.

Alternatively, special signal paths for the instrumentation information can be provided. Fig. 6.21 shows
a somewhat more complex processing resource that is provided with instrumentation provisions and
in addition is connected to an instrumentation bus. Since the transports of the instrumentation
information is not critical to performance (such information is set or queried only from time to time)
a correspondingly simple configuration is sufficient (for example, as a bit-serial bus). In addition to
the already explained debugging and performance measuring provisions, the resource according to fig.
6.21 is provided with the following functions:

• Decrypting of incoming operands and encrypting of outgoing results. Encryption means are well
known. Here, they are incorporated into the resource. This has the advantage that over the external
bus systems (that are provided, for example, on printed circuit boards) only encrypted data are
moved.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 99

• Owner-specific identification. In the simplest case this is embodied as fixed values that can be
queried. More advanced resources can be provided with authorization provisions, for example,
with password protection; they can be used only when corresponding correct authorization input
has been provided beforehand. The advantage is that this protection is inseparable from the
processing hardware so that, for example, copying of software (that is to be protected) is of no use
because the same-type resources in other machines require different authorization data.

Fig. 6.20 A resource with built-in debugging provisions.

Fig. 6.21 A resource with built-in instrumentation provisions.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 100

Conventional solutions that make available so-called trusted computer platforms are based on deriving
a type of signature from the particular properties of the hardware.

Such methods do not solve the basic problem. They require that the corresponding signature is verified
via the Internet. This is inconvenient, contradicts the basic principles of privacy or data protection, and
impedes the free utilization of the respective computer. The incorporation of directly acting protective
measures in ReAl hardware resources has the advantage that the free utilization of the computer is not
impaired and that a query of hardware and configuration data is not required because the protective
measures are provided directly. Free programs require no such resources (for example, according to
fig. 6.21). Programs that are subject to proprietary rights do not run on machines that are not provided
with corresponding resources. The encryption and identification functions are provided by the
hardware, in particular in the interior of the circuits. The details of operations thus cannot be reverse-
engineered by observing the data flow over external connections. The software emulation would be
futile (computing times would be too long).

Fig. 6.22 illustrates how a processing resource is concatenated with a special debugging resource. In
addition to the processing resources supplementing instrumentation resources are made available (for
debugging, for performance measurements and so on). They are called as needed (s-operators) and
concatenated to the processing resources (the actual application program does not change by doing
this). In the example, a simple processing resource (an adder) is connected to a debugging resource that
supports value comparison. When the result of the processing resource is identical to the set compare
(CMP) value, a stop condition is signalized. The debugging resource is designed such that it can
concatenate the information to be compared (here: the result of the processing resource) to the actual
destination resources. If the stop condition is met, the concatenation does not become effective
(conditional concatenation). Accordingly, the processing operation is stopped and, by fetching the
register contents, it is possible to examine the actual processing state. If the processing operation is to
be continued, the concatenation control in the debugging resource receives a corresponding signal via
the instrumentation bus.

Fig. 6.22 A processing resource concatenated with a special debugging resource.

THE REAL COMPUTER ARCHITECTURE – PRELIMINARY DESCRIPTION 101

Fig. 6.23 shows how conventional processing resources can be utilized for instrumentation purposes.
In this way, it is possible to combine configurations for debugging, for performance measurements and
the like as needed. In the example, an adder (processing resource) is combined with a subtractor
(debugging resource). The subtractor compares the result of the adder with a predetermined compare
value. Moreover, it transports the incoming results to other resources. The stop condition is signalized
by a concatenation to the platform (for example, it can trigger an interruption). This however does not
ensure always exact stopping at the stop point. More advanced general-purpose resources, which are
also suitable for instrumentation purposes, can be provided with conditional operand concatenation so
that, for example, they do not transport a result when a stop condition is met so that therefore the
processing operation is stopped temporarily for the purpose of examination.

Fig. 6.23 Two processing resources concatenated to perform debugging tasks.

