
ATA I/O CODE SNIPPETS RELEASE 1.1 1

ATA I/O Code Snippets
1. Principles

ATA I/O adapters are to be programmed like the I/O ports of microcontrollers. The starting
point of programming a particular ATA I/O adapter is its register description and its principles
of operation.

Note:
Described here are the most basic ATA I/O adapters, which do not support command execution.
They could be only operated on genuine parallel ATA (PATA) host adapters, not on host
adapters which are basically protocol converters from serial to parallel ATA.

Machine instructions
ATA I/O programming is based on accessing the ATA register file by means of I/O instructions
(Listing 1).

Input:

1. Place the I/O port address in the DX register.

2. Execute an IN AL, DX instruction.

3. Proceed with processing the byte found in the AL register.

Output:

1. Place the byte to be transferred in the AL register.

2. Place the I/O port address in the DX register.

3. Execute an OUT DX, AL instruction.

Input Output

MOV DX, port_adrs
IN AL, DX

MOV AL, byte_value
MOV DX, port_adrs
OUT DX, AL

Listing 1 Examples of basic input and output operations.

Addressing the ATA port
Usually, ATA ports on the motherboard are assigned legacy I/O addresses (Tables 1 and 2). The
addresses of ATA ports on add-in cards are assigned by the plug-and-play software. How to
obtain these address values, depends on the particular system environment. The most general
approach would be using appropriate API calls (operating system or PnP BIOS). An alternative

ATA I/O CODE SNIPPETS RELEASE 1.1 2

method consists in scanning the configuration address space (for example, by calling the PCI
BIOS). If the hardware configuration will never change, address assignment could be detected
even manually. In case of Windows, simply select Control Panel – System Properties –
Hardware – Device Manager – ATA/ATAPI Controllers – Resources. Otherwise, run an
appropriate system information or diagnostic program showing the PCI configuration.

IDE/ATA Channel
Device Addresses (Hex) Interrupt

Line
Alternate
Interrupt

LineComand Block Registers Control Block Registers

1. (Primary) 1F0...1F7 3F6 14 -

2. (Secondary) 170...177 376 15 -

3. (Ternary) 1E8...1EF 3EE 11
12 or 9

4. (Quaternary) 168...16F 36 10

Table 1 Legacy ATA address ranges.

CS Register Address DA
Register

Legacy PC ATA Ports

1- 0- 2 1 0 Hex 1 2 3 4

1 0 0 1 0 2 REG 2 (Sector Count) 1F2 172 1EA 0,17

1 0 0 1 1 3 REG 3 (LBA Low) 1F3 173 1EB 16B

1 0 1 0 0 4 REG 4 (LBA Mid) 1F4 174 1EC 16C

1 0 1 0 1 5 REG 5 (LBA High) 1F5 175 1ED 16D

1 0 1 1 0 6 DH (Device/Head) 1F6 176 1EE 16

Table 2 ATA registers applied for general purpose I/O.

ATA I/O and the operating system
Whether or not I/O instructions are permitted in application programs, depends on the operating
system. DOS imposes no restrictions at all. In Unix-like systems, an application program can be
given rights to execute I/O instructions by appropriate administration. Under Windows, I/O
instructions are permitted only in privileged programs. Consequently, accessing I/O ports
requires port drivers or specific device drivers.

Implementing the basic I/O access operations
ATA registers are accessible only one byte at a time. The byte transfer can be implemented by
inserting machine (assembler) instructions. Most of the compilers provide appropriate
functions, however. But beware – there are little differences (Table 3).

TurboC++ PacificC gcc (Linux)

inportb (adrs)
outportb (data, adrs)

inp (adrs)
outp (adrs, data)

inb (adrs)
outb (data, adrs)

Table 3 Byte I/O functions in some C compilers.

ATA I/O CODE SNIPPETS RELEASE 1.1 3

2. Basic code examples

Note:
The following code examples have been prepared using Borland's TurboC++-compiler (now
freely available) running under DOS (keep it simple and stupid . . .).

An ATA I/O hardware example
Our first example is the ATA adapter 05a (Fig. 1). It comprises five universal bidirectional 8
bit I/O ports. Under program control, each of the 5 • 8 = 40 I/O lines can be used as an input or
as an output. Each I/O port comprises a direction control register (DIR) and a data register
(DAT).

Each DIR bit position controls the direction of the corresponding I/O pin (Fig. 2):

• DIR bit = 0: pin configured as an input (driver in high impedance state),
• DIR bit = 1: pin configured as an output (driver active). The potential (low or high) on the

pin corresponds to the corresponding bit in the DAT register.

Each of the five ports (A... E) has its own port address in the DH register (Table 4). Within each
port, the data register (DAT) as well as the direction control register (DIR) are to be addressed
via two of the other ATA registers (Table 5).

Only the potentials (low or high) on the pins can be read back. Each read access to one of the
two registers (DIR or DAT, respectively) will deliver the potentials on the pins. This Spartan
solution has been chosen in order to keep cost down.

Fig. 1 ATA I/O port adapter 05a comprising five universal I/O ports.

ATA I/O CODE SNIPPETS RELEASE 1.1 4

Fig. 2 Principal structure of an I/O bit position.

DH register bits 3... 0 I/O port

1H Port A

2H Port B

3H Port C

4H Port D

5H Port E

all other values no effect

Table 4 Port addressing via DH register.

CS Register Address DA
Register

Legacy ATA Ports

1- 0- 2 1 0 Hex 1 2 3 4

1 0 1 0 0 4 Data register (DAT) 1F4 174 1EC 16C

1 0 1 0 1 5 Direction control register (DIR) 1F5 175 1ED 16D

1 0 1 1 0 6 Device selection and port address (DH) 1F6 176 1EE 16

Table 5 Register addressing within a selected I/O port. Read accesses to either DAT
or DIR addresses will read back the values on the pins.

Basic declarations
Listing 2 shows the declaration of the physical ATA addresses. In this example, the legacy ATA
port 2 is used. In Listing 3, the addressing of the five I/O ports is shown. These values are to be
loaded into the DH register. The example ATA I/O adapter is configured as the slave device,
hence bit four is always set.

ATA I/O CODE SNIPPETS RELEASE 1.1 5

// Physical ATA addresses

// The ATA I/O adapter is attached to the legacy ATA port 2

#include <stdio.h>,<conio.h>,<dos.h>,<string.h>

#define portadrs 0x176 // DH register
#define dir_reg 0x175 // DIR register of the selected port
#define dat_reg 0x174 // DAT register of the selected port

Listing 2 Declaration of physical ATA addresses. This declaration relates to the PC's
ATA port to which the adapter is to be attached. Here it is ATA port 2 (example source
file ata_phy.c).

// Port addresses for ATA adapter 05a

// The ATA I/O adapter is the slave device

// Addresses to be loaded into DH register before accessing the port

#define ioport_a 0x11
#define ioport_b 0x12
#define ioport_c 0x13
#define ioport_d 0x14
#define ioport_e 0x15

Listing 3 Declaration of the adapter's port addresses. This declaration pertains to the
particular adapter type and to the device configuration at the ATA cable (master or
slave). Here the ATA adapter 05a has been configured as slave device (example
source file ata_adap.c).

Physical ATA register access
Each I/O register access must be preceded by loading the device selection bit together with the
particular port address into the DH register:

1. Load the DH register (Fig. 3).

2. Read or write one of the other registers of the ATA register file (REG 2 to REG 5
according to Table 2).

Listing 4 shows an example.

Notes:

1. The DH register content cannot read back.

2. The effect of a read or write access on an ATA register address depends on the particular
adapter (see register description).

ATA I/O CODE SNIPPETS RELEASE 1.1 6

3. If the DH register contains already the correct value, it is not necessary to load it again
before accessing the other ATA registers.

4. In the time interval between loading the DH register and accessing another ATA register,
modification of the DH register content by other programs must be prevented.

This problem will arise only if (1) together with the ATA I/O adapter a regular drive is
attached to the same cable and if (2) the operating system supports preemptive multitasking
or if (3) ATA I/O adapters on the same cable are used by different interrupt handlers.
Countermeasures are obvious. The most elementary solution: avoid attaching ATA I/O
adapters and drives on the same cable. The ultimate solution would be an appropriate kernel
driver.

7 6 5 4 3 2 1 0

- - - DEVICE I/O Port Selection (Port Address)

Fig. 3 DH register content.

// Physical ATA register access routines for ATA I/O adapter 05a

// Basic declarations

#include <ata_phy.c>
#include <ata_adap.c>

// Borland Turbo C++ physical I/O port access functions used here

// If using another compiler, substitute outportb and inputb
accordingly

// Use physical address decarations only!

// ***************** Load the direction register ******************

void dirout(int adrs, int databyte
{
 outportb (portadrs, adrs); outportb (dir_reg,databyte);
}

ATA I/O CODE SNIPPETS RELEASE 1.1 7

// ***************** Load the data register ******************

void datout (int adrs, int databyte)
{
 outportb (portadrs, adrs); outportb (dat_reg, databyte);
}

// ***************** Read the I/O pins ******************

int datin (int adrs)
{
 outportb (portadrs, adrs); return inportb (dat_reg);
}

Listing 4 Physical ATA register access routines for ATA I/O adapter 05a. This is an
extract from the example source file ataio05a.

Supporting modification of register contents
To provide read-back capability for all ATA registers would increase the complexity and hence
cost of the adapter hardware. But modification of register contents may be supported by
software, however. This support is based on keeping copies of the register contents in RAM
(Listing 5). During a write operation (output) the register content will be written into the RAM
copy as well as into the hardware register. A read operation (input) addressing a write-only
register will fetch the register content out of the RAM copy. A modification operation (for
example, setting or clearing particular bits) will (1) modify the RAM copy and (2) write the
RAM content into the hardware register.

The RAM copy in the following example (Listing 4) consists of two arrays. The portregs array
holds the contents. The portctl array holds a type designation and an address pointer (Fig. 4).

15 0 7 0

Type designation Register address

Fig. 4 The structure of one element of the portctl array (see Listing 5). Type
designations: 1 = direction control register; 2 = data register; 3 = I/O pins.

// Basic I/O routines for ATA I/O adapter 05a

// *********** Basic declarations

#include <ata_phy_02.c>
#include <ata_adap_05s.c>

ATA I/O CODE SNIPPETS RELEASE 1.1 8

// ************* Logical addresses of the port registers

#define dir_a 0
#define dat_a 1
#define port_a 2
#define dir_b 3
#define dat_b 4
#define port_b 5
#define dir_c 6
#define dat_c 7
#define port_c 8
#define dir_d 9
#define dat_d 10
#define port_d 11
#define dir_e 12
#define dat_e 13
#define port_e 14

// ***************** Global variables ******************************

int portregs [15]; // RAM copies of the port registers

int portctl [15]; // port access control array

int bitmasks [8]; // masks for single bit access routines

// Borland Turbo C++ physical I/O port access functions used here

// If using another compiler, substitute outportb and inputb
accordingly

// Use logical addresses only (according to declarations above)!

// ********************** Single Byte Output ***************************

void out (int adrs, int data)
{

switch ((portctl [adrs] & 0xff00))
{
 case 0x0100: // if direction control register
 portregs [adrs] = data; // save copy of new register content
 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 outportb (dir_reg,data); // data to direction control register
 break;

ATA I/O CODE SNIPPETS RELEASE 1.1 9

 case 0x0200: // if data register
 portregs [adrs] = data; // save copy of new register content
 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 outportb (dat_reg,data); // data to data register
 break;
}

return;
}

// ********************** Single Byte Input ***************************

int in (int adrs)

{

if ((portctl [adrs] & 0xff00) == 0x0300) // only the port will be read in
 {
 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 portregs [adrs] = inportb (dat_reg); // update register copy in RAM
 }

return portregs [adrs]; // read register content out of copy in RAM
}

// ********************** Single Bit Output ***************************

// Bit modification will be done with the copies in RAM.

// Truth values correspond to C conventions.
// If data value is zero, bit will be cleared.
// If data value is not zero, bit will be set

void bitout (int adrs, int bitpos, int data)

{

switch ((portctl [adrs] & 0xff00))
 {

 case 0x0100: // if direction control register
 if (data == 0) portregs [adrs] = (portregs [adrs] & ~bitmasks [bitpos] &
 0xff); // clear bit

ATA I/O CODE SNIPPETS RELEASE 1.1 10

 else portregs [adrs] = (portregs [adrs] | bitmasks [bitpos]); // set bit

 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 outportb (dir_reg,portregs [adrs]); // data to data register
 break;

 case 0x0200: // if data register
 if (data == 0) portregs [adrs] = (portregs [adrs] & ~bitmasks [bitpos] &
 0xff);
 else portregs [adrs] = (portregs [adrs] | bitmasks [bitpos]);

 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 outportb (dat_reg,portregs [adrs]); // data to data register
 break;
 }

return;
}

 // ********************** Single Bit Input ***************************

// This routine will return an integer 0 or 1.

int bitin (int adrs, int bitpos)

{

 if ((portctl [adrs] & 0xff00) == 0x300 // only the port will be read in
 {
 outportb (portadrs, (portctl [adrs] & 0xff)); // port adrs into DH reg
 portregs [adrs] = inportb (dat_reg); // data to copy in RAM;
 }

// Return bit value out of copy in RAM

 if ((portregs [adrs] & bitmasks [bitpos]) == 0) return 0;
 else return 1;

}

 // ********************** I/O Initialization ***************************

// To be called at the beginning of the application program.

ATA I/O CODE SNIPPETS RELEASE 1.1 11

void ioinit ()
{
int n;

for (n = 0; n <= 44; n++)
portregs [n] = 0; // clear all copies in RAM

// Build the access control array
// Low order byte = port address within the ATA I/O adapter
// High order byte encodes register type:
// 1 = direction control, 2 = data, 3 = port

portctl [0] = 0x0100+ioport_a; // port A
portctl [1] = 0x0200+ioport_a;
portctl [2] = 0x0300+ioport_a;
portctl [3] = 0x0100+ioport_b; // port B
portctl [4] = 0x0200+ioport_b;
portctl [5] = 0x0300+ioport_b;
portctl [6] = 0x0100+ioport_c; // port C
portctl [7] = 0x0200+ioport_c;
portctl [8] = 0x0300+ioport_c;
portctl [9] = 0x0100+ioport_d; // port D
portctl [10] = 0x0200+ioport_d;
portctl [11] = 0x0300+ioport_d;
portctl [12] = 0x0100+ioport_e; // port E
portctl [13] = 0x0200+ioport_e;
portctl [14] = 0x0300+ioport_e;

// Build the bitmask array

bitmasks[0] = 1;
bitmasks[1] = 2;
bitmasks[2] = 4;
bitmasks[3] = 8;
bitmasks[4] = 16;
bitmasks[5] = 32;
bitmasks[6] = 64;
bitmasks[7] = 128;

}

Listing 5 Basic I/O routines for accessing the ATA I/O adapter 05a. These functions
emulate five I/O ports supporting three I/O addresses each (DIR, DAT and PORT).
The ports behave, for example, like an Atmel AVR Port (with its DDR, PORT and PIN
registers). This is an extract from the example source file ataio05a.

